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Analysis of Linear Multistep Methods
Alexis J. Drakopoulos

Abstract—Using Linear Multistep methods such as Adam-
Bashforth 1 (Forward Euler Method) and Adam-Bashforth 4 we
examine the behavior of first-order linear differential equations
and the rigidity of our methods.

I. INTRODUCTION

L INEAR Multistep methods are used for the numerical
solution of ordinary differential equations (We will refer

to these as ODEs), where an initial value is taken and
successive short steps forward in time find the next solutions,
creating an approximation to our ODE.

Single step methods such as Adam-Bashforth 1 (We will
call this AB1, AB2 etc) are the ones we will focus on in this
project. The numbers in front of the AB, such as AB1 denote
the number of steps, so AB1 is a single-step method (which
happens to be the Forward Euler Method). Single step methods
only use one previous point and its derivative to estimate our
next point. Methods such as Runge-Kutta take more points to
produce a higher-order method and then subsequently discard
all previous information before taking a second step.

Multistep methods try to be more accurate and efficient by
not discarding the previous information and instead using it.
Linear multistep methods are a linear combination of previous
values and derivatives.

II. GENERAL FORM

Numerical methods for ODEs attempt to approximate solu-
tions to problems of the form;

y′ = f(t, y), y(t0) = y0 (1)

for the real-valued function y of the real variable x, where
y′ = dy/dx. and y(t0) is our initial value. The differential
equation along with initial value (1) above is called an Initial
Value Problem (IVP).

In general we cannot assume that our function will have a
unique solution, however any elementary course on Differen-
tial Equations covers existence and uniqueness, and as such
proofs will be omitted in this text.

Theorem 1: Picard’s Theorem Suppose that f(.,.) is a
continuous function of its arguments in a region U of the (x,
y) plane which contains the rectangle

R = (x, y) : x0 ≤ x ≥ XM , |y − y0| ≤ YM ,

where XM > x0 and YM > 0 are constants. Suppose also,
that there exists a positive constant L such that

|f(x, y)− f(x, z)| ≤ L|y − z| (2)

holds whenever (x,y) and (x,z) lie in rectangle R. Finally,
letting

M = max|f(x, y) : (x, y) ∈ R

suppose that M(XM −x0) ≤ YM . Then there exists a unique
continuously differential function x → y(x), defined on the
closed interval [x0, XM ], which satisfies (1).

The condition (2) is called a Lipschitz condition, and L is
called a Lipshitz constant for f.

We will quickly define some notions:
- Convergence: A numerical method is convergent if the
numerical solution approaches the exact solution as the step
size h goes to 0. We require that for every ODE (1) with a
Lipschitz function f and every t > 0,

lim
h→0

max
+n=0,1,...,[t∗/h]

||yn,h − y(tn)|| = 0

- Consistency and Order: Suppose the Numerical Method is

yn+k = Ψ(tn+k; y(tn), y(tn+1), ..., y(tn+k−1);h)− y(tn+k)

The method is said to be consistent if

lim
h→0

δhn+k
h

= 0

The method is said to be of order p if

δhn+k = O(hp+1) as h→ 0

Hence a method is consistent if it has an order greater than 0.
The forward Euler Method has an order 1, so it is consistent.
Consistency is necessary for convergence, but for a method to
be convergent it also has to be zero-stable.

For some differential equations, applying methods such
as Euler’s method, explicit Runge-Kutta methods, Adam-
Bashforth methods we may get instability in our solutions.
This type of behavior is called stiffness, and is often caused
by large differences in time-scales. For example a function that
rapidly explodes or changes has to be taken at an appropriately
small time-scale for the method to converge.

III. ONE-STEP METHOD

Consider

y′ = f(t, y) = −(5p)y + t, 0 ≤ t ≤ 1, y(0) = 1

Where p is a given constant We can find the exact solution
through direct computation, it is simple but requires a by parts
evaluation on the right side. The exact value is then

y =
t

4p
− 1

16p2
+

1

e4pt
+

1

16p2e4pt

A. One-step Euler

A simple numerical method is Euler’s method:

yn+1 = yn + hf(tn, yn)

Euler’s method can be viewed as an explicit multistep method
for the degenerate case of one step.

The method, applied with a variable step sizes. We use N
= 8,15,32,64,128 where h = 0≤t≤1

N . We estimate the range of
convergence by calculating

p̃n =
1

ln(2)
ln
( ||eN/2||∞
||eN ||∞

)
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Table I
EULER’S METHOD

N-Values MaxError Convergence Rate
16 2.49E-02
32 1.24E-02 1.01E+00
64 6.16E-03 1.01E+00

128 3.07E-03 1.01E+00

Here we have a table of error values at different N values
along with a plot

From this we can clearly see that Euler’s method is success-
ful at approximating this ODE and that we have a convergence
rate of 1, which we showed earlier.

Figure 1. Euler’s Method using N=32 along with Error using Euler’s Method.

B. Stiffness with Euler’s Method

We have so far evaluated the accuracy of numerical methods
in terms of the rate at which our error approaches zero,
when our N approaches infinity (Step-size h approaches zero).
However this ignores the fact that the local truncation error of
one-step and multi-step methods also depends on higher-order
derivatives of the solution. In some cases, these derivatives
can be very large, even when the solution is relatively small,
which requires a minimum N value to be chosen to achieve
accuracy.

This leads to stiff equations. A differential equation y′ =
f(t, y) is said to be stiff if its exact solution y(t) includes
a term that decays exponentially to zero as t increases, but
whose derivatives are much greater in magnitude than the term
itself. For example e−ct, where c is a large positive constant,
because its nth derivative is cne−ct. Because the error includes
this term, the error can be quite large if our step-size is not
chosen to be small enough to counter-act the large derivative
(N size being sufficiently large).

Consider the problem

y′ = −15y, y(0) = 1, 0 ≤ t ≤ 3

The exact solution this time is e−15t, which rapidly decays
to zero as t increases. Solving this problem using Euler’s
method, with step size h=0.2, we get

yn+1 = yn − 15hyn = −2yn

which gives an exponentially growing solution yn = (−2)n.
But if we chose let’s say h=6.667E-3 we would obtain

yn = (0.9)n which more accurately behaves like our exact
solution by rapidly decaying to zero.

We can analyze the behavior of our methods on stiff
equations by applying a test equation y′ = λy. The solution is
always y(t) = eλt. Since our real solution rapidly approaches
zero, if our numerical method does the same for a fixed step-
size our method is said to be A-stable.

As λ increases in value, our equation becomes increasingly
stiff. We can determine how small our value of h (or N) must
be for any given value of λ.
When applying a one-step method to the test equation, our
computed solution is of the form

yn+1 = Q(hλ)yn

where Q(hλ) is a polynomial in hλ. This polynomial is
supposed to approximate ehλ since our exact solution satisfies
y(tn+1) = ehλy(tn). Where we must choose h so that
|Q(hλ)| < 1.

Euler’s method applied to the test equation y′ = λy is

yn+1 = yn + hf(tn, yn) = yn + h(λyn) = (1 + hλ)yn

Hence yn = (1 + hλ)ny0 with Q(z) = 1 + z. The region
of absolute stability is then {Z ∈ C|1 = z| < 1} as shown in
the graph below.

Figure 2. Circle radius 1 center (-1,0) in complex plane

The Euler method is not A-stable.

Our example had 0 ≤ t ≤ 3. So what is the minimum N
value we must take in order to get a stable solution? We have
to get −2 < z < 0 in order to be inside our region of stability.
This means, at z = 15 ∗ h = 2, which is just h = 2/15 or
N = 22.5 but since we can’t have non-integer n, we need
N > 23 to converge. ’The table of errors and convergence is
shown on the next page.’
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Table II
EULER’S METHOD

N-Values MaxError Convergence Rate
8 2.09E+05
16 1.36E+04 3.95
32 6.51E-01 1.43
64 1.98E-01 1.72

128 7.57E-02 1.39
256 3.49E-02 1.12
512 1.68E-02 1.05
1024 8.23E-03 1.03

Figure 3. At N=16 we can see that our value oscillates violently

Figure 4. Here at N=32 we can see that at low t we still have oscillation

Figure 5. At N=64 Euler’s method finally manages to converge at low t

IV. MULTI-STEP METHODS

The most common multi-step methods can be split into
three families, Adams–Bashforth methods, Adams–Moulton
methods, and the backward differentiation formulas.

We will focus on the Adams-Bashforth methods in this sec-
tion. In the previous section we talked about Euler’s Method,
which is just the first-order Adams-Bashforth method.

These methods are used to produce predictor-corrector
algorithms in which the error is controlled by varying step-
size and order. To derive these methods, we use

yn+1 = yn +

∫ xn+1

xn

f(t, y(t))dt

Polynomials that interpolate y′(t) = f(t, y(t)) are con-
structed and integrated over [xn, xn+1] to obtain an ap-
proximation to yn+1. We will focus on explicit or predictor
formulas.

AB methods are based on the idea of approximating the
integrand with a polynomial. Using a sth order polynomial
results in a s+1th order method. There are two types of Adams
methods, explicit and implicit. The explicit are called AB and
the implicit are called Adams-Moultoun (AM) methods. We
will focus on the AB methods here.

We will not derive the AB methods as this is too time-
consuming and is unnecessary for this paper. However if you
wish to learn more about AB methods I highly recommend
spending some time learning how to derive them.

The AB methods are explicit methods. The coefficients are
as−1 = −1 and as−2 = ... = a0 = 0, while bj are chosen such
that the methods have order s, which determines the methods.

The AB methods with s=1,2,3,4 are

yn+1 = yn + hf(tn, yn)

yn+2 = yn+1 + hf
(3

2
f(tn+1, yn+1)− 1

2
f(tn, yn)

)
yn+3 = yn+2 + hf

(23

12
f(tn+2, yn+2)− 4

3
f(tn+1, yn+1)

+
5

12
f(tn, yn)

)
yn+4 = yn+3 + hf

(55

24
f(tn+3, yn+3)− 59

24
f(tn+2, yn+2)

+
37

24
f(tn+1, yn+1)− 3

8
f(tn, yn)

)
We will now attempt to solve a problem using the AB4

method outlined above. Consider the IVP

y′ = 7t2 − 4y

t
, 1 ≥ t ≥ 6, y(1) = 5p

We first find the exact solution to this problem

y′ +
4y

t
= 7t2

µ(t) = e
∫

4
t dt = t4

(t4y)′ = 7t6

t4y = t7 + c→ y = t3 +
c

t4

y(1) = 5p = 0.62

0.62 = 1 + c→ c = −.38

y = t3 − 19

50t4

Now we will apply our AB4 method

yn+4 = yn+3 + hf
(55

24
f(tn+3, yn+3)− 59

24
f(tn+2, yn+2)

+
37

24
f(tn+1, yn+1)− 3

8
f(tn, yn)

)
We apply it for N = 16, 32, 64, 128, 256 and calculate the

rate of convergence as we did above

p̃n =
1

ln(2)
ln
( ||eN/2||∞
||eN ||∞

)
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Table III
EULER’S METHOD

N-Values MaxError Convergence Rate
16 1.26E-01
32 1.09E-02 3.52
64 1.07E-03 3.35

128 8.71E-05 3.62
256 6.57E-06 1.73

Figure 6. At N=16 we already have quite an accurate representation

Figure 7. Here at N=32 we have some oscillation in our error but it is
decreasing with larger t

Figure 8. At N=64 we have a steady exponential decline in error

We will now have a look when our initial condition is
y(1) = 1

y′ +
4y

t
= 7t2

µ(t) = e
∫

4
t dt = t4

(t4y)′ = 7t6

t4y = t7 + c→ y = t3 +
c

t4

y(1) = 1

1 = 1 + c→ c = 0

y = t3

which we approximate exactly due to the degree of t.
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